
ClientServerNetwork Documentation
Release latest

Sep 29, 2020

Contents

1 Running the Server 3

2 Running the Client 5
2.1 Connecting to the server . 5

3 Project requirements 7

4 Connection and Disconnection 9
4.1 Connecting to a server . 9
4.2 Unique Client Ids . 9
4.3 Disconnecting from a server . 9

4.3.1 From the client . 9
4.3.2 Kicking a client . 10

5 Networked Objects 11
5.1 Instantiating . 11
5.2 Destroying . 12
5.3 Network Sync Component Details . 12
5.4 Remote Procedure Calls . 12
5.5 Smooth Movement . 12

6 Ownership 13
6.1 Default Ownership . 13
6.2 Ownership Transferring . 13

7 Remote Procedure Calls (RPCs) 15
7.1 Overview . 15
7.2 Format of an RPC . 15
7.3 RPCs from the client . 15
7.4 RPCs from the server . 15
7.5 Determining where an RPC goes - MessageReceiver . 15
7.6 Supported Data Types . 16
7.7 RPCs from one client to another . 16

8 Area Filtering 17
8.1 Examples . 17

8.1.1 Rogue . 17

i

8.1.2 Team Chat . 17
8.1.3 Virtual Areas . 17

8.2 Using Area Filters . 17
8.2.1 Synchronizing Game State . 18

9 Voice Chat 19
9.1 Getting Started . 19
9.2 Voice Chat: A Primer . 19
9.3 Using Voice Chat . 19
9.4 ThreadedJob - Multiple Threads in Unity . 19

10 Additional Features 21

11 Client Development 23

12 Server Development 25

13 Example Projects 27
13.1 Tactics Server . 27
13.2 Tic-Tac-Toe . 27

13.2.1 Overview . 27
13.2.2 Server . 27
13.2.3 Client . 27

14 License 29
14.1 MIT License . 29
14.2 Copyright (c) 2018 David Carrigg . 29

15 UCNetwork Network 31
15.1 Overview . 31
15.2 Features . 31
15.3 Additional Help and Contact . 32
15.4 Can I use this library for my project? . 32

ii

ClientServerNetwork Documentation, Release latest

The goal of this section is to be short, easy to follow, and closer to a tutorial than reference documentation. If someone
follows the instructions on this page, they should be up and running with an example client and server, with a bit of
guidance on where to go next to start adding their own game logic.

To start, download the latest version of the Client and Server projects.

Contents 1

ClientServerNetwork Documentation, Release latest

2 Contents

CHAPTER 1

Running the Server

1. Open the Server project and load the scene called “Server”

2. Hit play.

By default, the server will run on port 603 (the area code for New Hampshire). The example server logic will auto-
matically approve all connection requests.

3

ClientServerNetwork Documentation, Release latest

4 Chapter 1. Running the Server

CHAPTER 2

Running the Client

1. Open the Client project and load the scene called “Client”

2. Hit play.

2.1 Connecting to the server

The client will allow you to enter the IP address and port of the server. If you are running the server locally with
default settings, you can enter “127.0.0.1” for the IP address and “603” for the port.

The connection process starts by sending a request to the server to connect. The default server logic will automaitcally
approve all connection requests, and your client will be approved. Once your client is notified that it has properly
connected to the server, it will add itself to area 1 (see the section on area filtering for more information), spawn its
own “Player” object and add the player object to area 1.

To test with more client connections, you should build the client project and run it outside of the Unity editor.

TODO: This should be a quickstart guide to use the networking library. A short tutorial on how to get an example
client and server project, as well as set it up so they can connect to each other, as well as simple examples of RPCs
and Networked Objects should be included.

TODO: What is the process of creating a custom server? What considerations are needed when developing a server?

TODO: What is the process of creating a custom client using this library? What considerations are needed when
developing a client?

5

ClientServerNetwork Documentation, Release latest

6 Chapter 2. Running the Client

CHAPTER 3

Project requirements

This library was updated to support Unity version 2018.2.2f1, but may work with newer versions.

7

ClientServerNetwork Documentation, Release latest

8 Chapter 3. Project requirements

CHAPTER 4

Connection and Disconnection

4.1 Connecting to a server

TODO: Discuss the process of connecting to a server, including the specific messages between the client and server.
Discuss requirements when connecting via IP, as well as opening a port on the server. How are other clients notified,
if at all, that a client has connected to the server? Discuss the process of a server confirming or denying a connection,
and an example on how a server could check with an external resource to determine if a client should connect (such as
checking with a database, steam servers, etc).

4.2 Unique Client Ids

TODO: Discuss how each client is assigned a unique id. How would the game logic on the server get this id, and how
would it use this id?

4.3 Disconnecting from a server

TODO: Discuss the process of disconnectng from a server, including the specific messages between the client and a
server. How are other clients notified, if at all, that a client has disconnected from the server? and the server kicking a
client.

4.3.1 From the client

TODO: Discuss the different ways a client can disconnect: Connection timing out (in case of client crashing/closing
abruptly) or the client requesting a disconnection

9

ClientServerNetwork Documentation, Release latest

4.3.2 Kicking a client

TODO: Discuss how the server can kick a client

10 Chapter 4. Connection and Disconnection

CHAPTER 5

Networked Objects

Networked objects (as well as RPCs), make up the bulk of what the networking library supports. Most full games will
be built using a combination of networked objects, as well as remote procedure calls. Knowing when to use one over
the other is entirely up to the developers of the game, but some best practices can guide those decisions.

In general, a networked object is a game object which is instantiated on every client connected to the server. As
the object moves on one client, information about it’s transform is automatically sent through the server to the other
connected clients. A simple example of this may be a game object representing a player’s main character. When the
game object representing the character is instantiated, it will automatically be created on all other clients connected to
the server. As the player moves their character in the simulation, the game object representing that character on all of
the other clients will move as well, keeping all of their positions and rotations in sync.

5.1 Instantiating

Instantiating a network object is similar to instantiating any other object in Unity, with a few minor differences. First,
use the Instantiate method found in ClientNetwork, instead of Unity’s built-in Instantiate method. The first parameter
of this method is the string name of a prefab you would like to instantiate. This string name will be sent to the server,
as well as any other clients which need to instantiate the object. For Unity to properly instantiate the object, a prefab
with that name must be in a Resources directory.

Note: Loading objects from within a Resources directory based on their names is no longer recommended by Unity
(but is still fully functional). It will be worth exploring updating this logic to instead use one of Unity’s newer systems
for dynamic asset loading, like Addressables or Asset Bundles.

The server can spawn objects in a similar manner, however, please see the documentation on ownership to understand
how server-instantiated objects behave.

Networked objects need to have the NetworkSync component. This component assists the networking system by track-
ing a unique id for the object, handling remote procedure calls, as well as handling object synchronization messages.
If you do not feel that your object needs these features, then it may be better to call an RPC to AllClients and have
them all instantiate local objects.

All networked objects have unique ids associated with them, which assists the networking system in sending messages
about specific objects to all clients. One feature of UCNetwork is that local object instantiation happens synchronously,

11

ClientServerNetwork Documentation, Release latest

meaning it will immediately instantiate an object on your local client when you call ClientNetwork.Instantiate. In order
to accomplish this, while still having unique object ids across the entire network, every client is given a pool of unique
ids (default is 500). When a client instantiates an object, it picks a free id in the id pool it has been given and tells the
server which id it has chosen for the new network object. The server tracks the size of each client’s pool of ids and
will send additional ids to a client when it starts running low.

5.2 Destroying

When a networked game object is destroyed, it need to inform the server (which will inform the other clients) that
the object needs to be removed from the simulation. As objects are destroyed, the NetworkSync calls ClientNet-
work.Destroy, which will send a message to the server that the object should be removed from all clients.

Note: What happens when a client who does not own an object tells the server that it has been destroyed?

5.3 Network Sync Component Details

TODO: What does a network sync component provide? Why is it required? What callbacks does the network sync
component provide to the object it is attached to, if any, and what additional functionality does it provide? How can
you add additional data to the Network Synchronization Messages? What is a LiteSync message?

5.4 Remote Procedure Calls

TODO: Discuss sending remote procedure calls to a single game object. Discuss how sending a RPC to a single game
object works, and why you would use it. More detail regarding RPCs will be provided in the RPC documentation.

5.5 Smooth Movement

TODO: Discuss network interpolation and extrapolation. Why is this needed? How does it account for lag? What
considerations would need to be make regarding objects with physics, or fast paced action games?

12 Chapter 5. Networked Objects

CHAPTER 6

Ownership

All networked game objects are “owned” by an individual client.

6.1 Default Ownership

TODO: Discuss how ownership is assigned to networked game objects as they are spawned, both from the client and
server.

6.2 Ownership Transferring

TODO: Discuss how and when ownership of game objects is transferred between various clients. Discuss why we
would want to transfer ownership (as clients are leaving areas, disconnecting, or based on gameplay).

13

ClientServerNetwork Documentation, Release latest

14 Chapter 6. Ownership

CHAPTER 7

Remote Procedure Calls (RPCs)

7.1 Overview

Remote Procedure Calls are a simple way to fit networking interactions into a typical game’s code structure. They
can be conceptualized to work the same way as normal function calls, but initiated by a remote machine. Once
communicated across the network, RPCs use reflection to find and invoke the matching method on the receiving
object (indicated by the object’s network ID).

7.2 Format of an RPC

TODO: Discuss the general way to call RPCs, including what parameters the CallRPC function allows. Discuss how
to define RPC functions.

7.3 RPCs from the client

TODO: Discuss calling RPCs from the client to the server. Examples on why you would do this.

7.4 RPCs from the server

TODO: Calling RPCs from the server to the clients (or single client). Examples on why you would do this.

7.5 Determining where an RPC goes - MessageReceiver

TODO: Discuss the different options for the MessageReceiver parameter for the CallRPC function. What does each
of them mean, and why would you use each? (ServerOnly = 1, AllClients = 2, OtherClients = 4, AllClientsInArea =
8, OtherClientsInArea = 16, SingleClient = 32)

15

ClientServerNetwork Documentation, Release latest

7.6 Supported Data Types

TODO: Discuss the data types that the networking library allows you to send. Discuss how to add additional data
types (WriteRPCParams and ReadRPCParams).

7.7 RPCs from one client to another

TODO: Discuss how and why clients would call RPCs that arrive to a single other client. Discuss why this isn’t
natually supported by the networking library.

16 Chapter 7. Remote Procedure Calls (RPCs)

CHAPTER 8

Area Filtering

The concept of “area filtering” allows the networking library to send data to specific groups of clients. For example, if
client A, B, and C are in a dungeon while client D is back in town, you probably don’t need to send the data relating
to what is going on in the dungeon to client D.

8.1 Examples

8.1.1 Rogue

TODO: Describe why this system would be used for a character who could hide themselves from other players

8.1.2 Team Chat

TODO: Describe how this system could be used for handling something like team chat, where a specific group of
players should be able to communicate with each other

8.1.3 Virtual Areas

TODO: Describe how and why this system could be used for supporting different locations in a larger game, such are
multi-floor dungeons, and clients who have completely different scenes loaded

8.2 Using Area Filters

TODO: Describe how to use area filtering, including adding clients and networked game objects to areas, removing
them from areas

17

ClientServerNetwork Documentation, Release latest

8.2.1 Synchronizing Game State

TODO: With clients in different areas, describe how clients are told the current state of an area when adding themselves
to an area which already has networked game objects, etc.

18 Chapter 8. Area Filtering

CHAPTER 9

Voice Chat

9.1 Getting Started

TODO: How to get started with online voice chat

9.2 Voice Chat: A Primer

TODO: Describe how voice chat communication over the internet works in a general sense, which includes recording
microphone data, compression, serialization, and playing the audio on a recieving client at the proper location.

9.3 Using Voice Chat

TODO: Details on this voice chat integration, which was initially built by FHolm. The original voice chat library can
be found here: FHolm Old Unity Assets. Describe any changes and modifications from the original version

9.4 ThreadedJob - Multiple Threads in Unity

TODO: How does the ThreadedJob functionality work? Examples on how it could be used elsewhere

19

https://github.com/fholm
https://github.com/fholm/unityassets/tree/old

ClientServerNetwork Documentation, Release latest

20 Chapter 9. Voice Chat

CHAPTER 10

Additional Features

TODO: Describe any additional features the library supports? What features are these, how do you use them, why
would you use them?

21

ClientServerNetwork Documentation, Release latest

22 Chapter 10. Additional Features

CHAPTER 11

Client Development

TODO: Describe best practices for developing a client. This section may include any topics relating to client develop-
ment that don’t fit in with the rest of the documentation, including pro-tips, guidance, or other recommendations.

23

ClientServerNetwork Documentation, Release latest

24 Chapter 11. Client Development

CHAPTER 12

Server Development

TODO: Describe best practices for developing a server. This section may include any topics relating to server devel-
opment that don’t fit in with the rest of the documentation, including pro-tips, guidance, or other recommendations.

25

ClientServerNetwork Documentation, Release latest

26 Chapter 12. Server Development

CHAPTER 13

Example Projects

13.1 Tactics Server

Example of the gameplay

How the server is developed

Post the challenge of developing the client

13.2 Tic-Tac-Toe

13.2.1 Overview

This is an overview of Tic-Tac-Toe, and how this example has been developed. Example RPCs and diagram on players.
Support for spectators and different players reokacing

13.2.2 Server

13.2.3 Client

27

ClientServerNetwork Documentation, Release latest

28 Chapter 13. Example Projects

CHAPTER 14

License

14.1 MIT License

14.2 Copyright (c) 2018 David Carrigg

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

29

ClientServerNetwork Documentation, Release latest

30 Chapter 14. License

CHAPTER 15

UCNetwork Network

15.1 Overview

This is an authoritative client-server networking library for Unity3D, built using Lidgren.

15.2 Features

• Online multiplayer!

• Real-time messaging and object synchronization for Unity3D

• Authoritative, dedicated, and standalone server support

• Support for clients with different codebases, and asymmetrical experiences

• Message filtering based on logical “Areas”

• Open world games, or simulations where clients are in different scenes

• Networked object ownership transfer

• Easily hook up your own functionality for:

– Storing game state when clients disconnect

– Authorizing player connections based on external systems

– Server-side gameplay logic

• . . . and more!

31

https://github.com/lidgren/lidgren-network-gen3

ClientServerNetwork Documentation, Release latest

15.3 Additional Help and Contact

This library was developed by David Carrigg, with contributions from the rest of the development team that worked
on the now cancelled game, Upsilon Circuit. You can find various ways to contact me on my website.

15.4 Can I use this library for my project?

Probably! This software is licensed with the MIT License.

Have fun!

32 Chapter 15. UCNetwork Network

https://www.youtube.com/watch?v=ue0C7iHMwUM
http://dcarrigg.com

	Running the Server
	Running the Client
	Connecting to the server

	Project requirements
	Connection and Disconnection
	Connecting to a server
	Unique Client Ids
	Disconnecting from a server
	From the client
	Kicking a client

	Networked Objects
	Instantiating
	Destroying
	Network Sync Component Details
	Remote Procedure Calls
	Smooth Movement

	Ownership
	Default Ownership
	Ownership Transferring

	Remote Procedure Calls (RPCs)
	Overview
	Format of an RPC
	RPCs from the client
	RPCs from the server
	Determining where an RPC goes - MessageReceiver
	Supported Data Types
	RPCs from one client to another

	Area Filtering
	Examples
	Rogue
	Team Chat
	Virtual Areas

	Using Area Filters
	Synchronizing Game State

	Voice Chat
	Getting Started
	Voice Chat: A Primer
	Using Voice Chat
	ThreadedJob - Multiple Threads in Unity

	Additional Features
	Client Development
	Server Development
	Example Projects
	Tactics Server
	Tic-Tac-Toe
	Overview
	Server
	Client

	License
	MIT License
	Copyright (c) 2018 David Carrigg

	UCNetwork Network
	Overview
	Features
	Additional Help and Contact
	Can I use this library for my project?

